
22/9/2013	

1	

EH2750 Computer Applications in
Power Systems, Advanced Course.

Professor Lars Nordström, Ph.D.
Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Lecture 2

Acknowledgement

• These slides are based largely on a set of slides
provided by:

Professor Rosenschein of the Hebrew University
Jerusalem, Israel

and
Dr. Georg Groh, TU-München, Germany.

• Available at the Student companion site of the
Introduction to Multi Agent Systems book

Outline of the Lecture

• Agent definition – a closer look (Ch 2.1)

• Beliefs Desires & Intentions –BDI (Ch 2.4)

• Formalising the agents (Ch 2.5)

• Agent decision making – Utility (Ch 2.6)

• Agent reasoning – deduction (Ch 3)

What is an Agent?

• The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

• Thus: an agent is a computer system capable of
autonomous action in some environment in order to
meet its design objectives

System

Environment

input
output

22/9/2013	

2	

Intelligent Agents

• Examples of agents that fit the definition:
-  Thermostat
-  UNIX daemon, Windows services
-  Controllers

• An intelligent agent is a computer system capable
of flexible autonomous action in some environment
in order to meet its design objectives

• With flexible, we mean:
-  reactive
-  pro-active
-  social

What does Reactive mean?

• If the environment is static, the program can execute
as planned, for example
-  Parsing text-files
-  Compiling sourcecode into executable code.

• The real world is however dynamic
• It is difficult to build software program that accepts
failure and constantly revises its “mission”

• A reactive system is one that keeps interacting with the
environment constantly in order to determine if a
certain action is appropriate – this is very much a
timing issue

Proactive then, what’s that

• Reacting to an environment is easy
-  Thermostat (again)

• But we want agents to do things for us, not just
waiting for changes in the environment, we want them
to be goal directed

• Pro-activeness is then the ability to generate and
work towards goals not just waiting for a change.

• The simpler case is that we set the goal for the agent
at design time.

Goal-oriented vs. Reactive behaviour

We want our agents to be reactive, responding to
changing conditions in an appropriate (timely) fashion

and
We want our agents to systematically work towards

long-term goals

• This is the same problem we humans face, long term
goal or short-term reaction?

• These two considerations can be at odds with one
another, and design this remains a open question for
research and design.

 ρ

22/9/2013	

3	

Social then, what’s that about?

• The real world is a multi-agent environment,
remember the definition of MAS:

A multiagent system is one that consists of a number
of agents, which interact with one-another. To
successfully interact, they will require the ability to
cooperate, coordinate, and negotiate with each other,
much as people do

• Social ability in agents is the ability to interact with
other agents to negotiate, cooperate and share
information

Environments
Accessible vs. inaccessible

• An accessible environment is one in which the agent
can obtain complete, accurate, up-to-date information
about the environment’s state

• Most moderately complex environments (including, for
example, the everyday physical world and the
Internet) are inaccessible
-  Subsets of the real-world can of course be made

accessible
- Measurements in a Power grid (U,I,P,Q, states, φ etc)

• The more accessible an environment is, the simpler it
is to build agents to operate in it

Environments –
Deterministic vs. non-deterministic

• A deterministic environment is one in which any
action has a single guaranteed effect — there is
no uncertainty about the state that will result
from performing an action

• The physical world can to all intents and
purposes be regarded as non-deterministic
-  Again, subsets of the real world can appear

deterministic
• Non-deterministic environments present greater
problems for the agent designer

Environments
Episodic vs. non-episodic

• In an episodic environment, the performance of an
agent is dependent on a number of discrete episodes,
with no link between the performance of an agent in
different scenarios

• Episodic environments are simpler from the agent
developer’s perspective because the agent can
decide what action to perform based only on the
current episode — it need not reason about the
interactions between this and future episodes

22/9/2013	

4	

Environments
Static vs. dynamic

• A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the
agent

• A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond
the agent’s control

• Other processes can interfere with the agent’s

• The real world is obviously a highly dynamic environment
-  But is a distribution grid a highly dynamic environment?

14

Environments
Discrete vs. continuous

• An environment is discrete if there are a fixed, finite
number of actions and percepts in it

• A chess game is an example of a discrete
environment, and taxi driving an example of a
continuous one

• Continuous environments have a certain level of
mismatch with computer systems

• Discrete environments could in principle be handled
by a kind of “lookup table”

What is an Agent?

• The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

• An intelligent agent is a computer system capable of flexible
autonomous action in some environment in order to meet its
design objectives

System

Environment

input
output

Outline of the Lecture

• Agent definition – a closer look (Ch 2.1)

• Beliefs Desires & Intentions –BDI (Ch 2.4)

• Formalising the agents (Ch 2.5)

• Agent decision making – Utility (Ch 2.6)

• Agent reasoning – deduction (Ch 3)

22/9/2013	

5	

Describing things

• How do you best describe the event of holding a stone
in your hand and dropping it? Which terms do you use
to explain the event?

• Concepts like:
- Mass
- Gravity
-  Force

• Are useful terms (obviously)

Descriptions like this is based on a physical stance

Describing things

• How do you best describe a computer programs
execution of a control loop that suggest you to buy a
pink striped shirt?

• Concepts like:
-  Thinks
-  Says
-  Asks
-  ”The computer asked if I was older than 40 and now it

thinks I like pink shirts”

19

Agents as Intentional Systems

• When explaining human activity, it is often useful to
make statements such as the following:

“Janine took her umbrella because she believed it was
going to rain and she did not want to ruin her hair.”

• These statements make use of a folk psychology, by
which human behavior is predicted and explained
through the attribution of attitudes, such as believing
and desiring like wanting (as above), hoping, fearing,
and so on

• The attitudes employed in such folk psychological
descriptions are called the intentional notions

Beliefs, Desires & Intentions - BDI
• When we describe Intelligent Agents it is convenient to

talk about them as if they have:
-  Beliefs
•  Some image of the environment
•  E.g. Temperature measurement

-  Desires
•  Goals they wish to achieve
•  E.g Increase temperature

-  Intentions
•  Actions that the agent can take
•  Means by which to do something
•  Opening hot water valve

22/9/2013	

6	

Outline of the Lecture

• Agent definition – a closer look (Ch 2.1)

• Beliefs Desires & Intentions –BDI (Ch 2.4)

• Formalising the agents (Ch 2.5)

• Agent decision making – Utility (Ch 2.6)

• Agent reasoning – deduction (Ch 3)

Formalised view of Agents

Abstract Architecture for Agents
• Assume the environment may be in any of a finite set E of
discrete, instantaneous states:

• Agents are assumed to have a repertoire of possible
actions available to them, which transform the state of the
environment:

• A run, r, of an agent in an environment is a sequence of
interleaved environment states and actions:

Abstract Architecture for Agents

• Let:

- R be the set of all such possible finite sequences (over E and Ac)

- RAc be the subset of these that end with an action

- RE be the subset of these that end with an environment state

22/9/2013	

7	

State Transformer Functions

• A state transformer function represents
behavior of the environment:

• Note that environments are…
- history dependent
- non-deterministic

• If τ(r)=∅, then there are no possible successor
states to r. In this case, we say that the system
has ended its run

• Formally, we say an environment Env is a triple
Env =〈E,e0,τ〉 where: E is a set of environment
states, e0∈ E is the initial state, and τ is a state
transformer function

Agents

• Agent is a function which maps runs to actions:

• An agent makes a decision about what action to perform based
on the history of the system that it has witnessed to date. Let
AG be the set of all agents

Systems

• A system is a pair containing an agent and an
environment

• Any system will have associated with it a set of
possible runs; we denote the set of runs of agent
Ag in environment Env by R(Ag, Env)

• (We assume R(Ag, Env) contains only terminated
runs)

Systems

•  Formally, a sequence

represents a run of an agent Ag in environment Env =〈E,e0,τ〉 if:

1.  e0 is the initial state of Env
2.  α0 = Ag(e0); and
3.  For u > 0,

22/9/2013	

8	

Why are we talking about this?

Agents are implemented as software, i.e. Source code
programmed by someone to execute on a computer – so it’s
just a program!?!

 Well, we want to make sure that the program works as
intended, that no circuit breakers are opened when they
should not be.

 So, we need to make sure that our design of this program is
correct and complete and at the same time efficient– right?

Therefore, we need a rigid (almost formal) way to talk about
and design the program/software/agent

Purely Reactive Agents

• Some agents decide what to do without reference to their
history — they base their decision making entirely on the
present, with no reference at all to the past

• We call such agents purely reactive:

• A thermostat is a purely reactive agent

Perception

• Now introduce the perception system:

Environment

Agent
see action

Perception

• The see function is the agent’s ability to observe its
environment, whereas the action function represents
the agent’s decision making process

• Output of the see function is a percept:
see : E → Per

which maps environment states to percepts, and action
is now a function

action : Per* → Ac

which maps sequences of percepts to actions

22/9/2013	

9	

Agents with State
• We now consider agents that maintain state:

Environment

Agent
see action

next state

Agents with State
• These agents have some internal data structure, which
is typically used to record information about the
environment state and history.
Let I be the set of all internal states of the agent.

• The perception function see for a state-based agent is
unchanged:

see : E → Per
 The action-selection function action is now defined as a
mapping

action : I → Ac
 from internal states to actions. An additional function

next is introduced, which maps an internal state and
percept to an internal state:

next : I × Per → I

Agent Control Loop

1.  Agent starts in some initial internal state i0

2.  Observes its environment state e, and
generates a percept see(e)

3.  Internal state of the agent is then updated via
next function, becoming next(i0, see(e))

4.  The action selected by the agent is action(next(i0,
see(e)))

5.  Goto 2

Outline of the Lecture

• Agent definition – a closer look (Ch 2.1)

• Beliefs Desires & Intentions –BDI (Ch 2.4)

• Formalising the agents (Ch 2.5)

• Agent decision making – Utility (Ch 2.6)

• Agent reasoning – deduction (Ch 3)

22/9/2013	

10	

Tasks for Agents

• We build agents in order to carry out tasks for us

• The task must be specified by us…

• But we want to tell agents what to do without
telling them how to do it

Utility Functions over States

• One possibility: associate utilities with
individual states — the task of the agent is
then to bring about states that maximize utility

• A task specification is a function
u : E → R

which associates a real number with every
environment state

Utility Functions over States

• But what is the value of a run…
- minimum utility of a state on the run?
- maximum utility of a state on the run?
-  sum of utilities of states on run?
-  average?

• Disadvantage: difficult to specify a long term view when
assigning utilities to individual states

Utilities over Runs

• Another possibility: assigns a utility not to individual
states, but to runs themselves:

u : R → R
• Such an approach takes an inherently long term view

- We watch several runs and evaluate which is the best
-  Assumes that the environment is in some way predicatable

• Other variations: incorporate probabilities of different
states emerging

• Difficulties with utility-based approaches:
- where do the numbers come from?
- we don’t think in terms of utilities!
-  hard to formulate tasks in these terms

22/9/2013	

11	

Tileworld example

• Simulated two dimensional grid environment on
which there are agents, tiles, obstacles, and holes

• An agent can move in four directions, up, down,
left, or right, and if it is located next to a tile, it can
push it

• Holes have to be filled up with tiles by the agent.
An agent scores points by filling holes with tiles,
with the aim being to fill as many as possible.

Expected Utility & Optimal Agents

• Write P(r | Ag, Env) to denote probability that run r occurs
when agent Ag is placed in environment Env
Note:

• Then optimal agent Agopt in an environment Env is the one
that maximizes expected utility:

Predicate Task Specifications

• A special case of assigning utilities to histories is to
assign 0 (false) or 1 (true) to a run

• If a run is assigned 1, then the agent succeeds on
that run, otherwise it fails

• Call these predicate task specifications

• Denote predicate task specification by Ψ.

 Ψ : R → {0, 1}.

Task Environments

•  A task environment is a pair 〈Env, Ψ〉 where Env is an
environment,

Ψ : R → {0, 1}
 is a predicate over runs.

Let TE be the set of all task environments.
•  A task environment specifies:

-  the properties of the system the agent will inhabit
-  the criteria by which an agent will be judged to have

either failed or succeeded

22/9/2013	

12	

Task Environments

• Write RΨ(Ag, Env) to denote set of all runs of the agent Ag
in environment Env that satisfy Ψ:

•  We then say that an agent Ag succeeds in task
environment 〈Env, Ψ〉 if

• Meaning that all possible runs fulfill the statement

46

The Probability of Success

• Let P(r | Ag, Env) denote probability that run r occurs
if agent Ag is placed in environment Env

• Then the probability P(Ψ | Ag, Env) that Ψ is satisfied
by Ag in Env would then simply be:

Outline of the Lecture

• Agent definition – a closer look (Ch 2.1)

• Beliefs Desires & Intentions –BDI (Ch 2.4)

• Formalising the agents (Ch 2.5)

• Agent decision making – Utility (Ch 2.6)

• Agent reasoning – deduction (Ch 3 (only 3.1))

Agent Architectures

• We want to build agents, that enjoy the
properties of autonomy, reactiveness, pro-
activeness, and social ability that we talked
about earlier

• This is the area of agent architectures
• Maes defines an agent architecture as:
‘[A] particular methodology for building [agents]. It specifies
how… the agent can be decomposed into the construction of a
set of component modules and how these modules should be
made to interact. The total set of modules and their
interactions has to provide an answer to the question of how
the sensor data and the current internal state of the agent
determine the actions… and future internal state of the agent.
An architecture encompasses techniques and algorithms that
support this methodology.’

22/9/2013	

13	

Agents with State - repeated
• These agents have some internal data structure, which
is typically used to record information about the
environment state and history.
Let I be the set of all internal states of the agent.

• The perception function see for a state-based agent is
unchanged:

see : E → Per
 The action-selection function action is now defined as a
mapping

action : I → Ac
 from internal states to actions. An additional function

next is introduced, which maps an internal state and
percept to an internal state:

next : I × Per → I

So, how do we make the agent think?

• One straightforward way is to use logic
• Program the agent to be completely logical and use
deduction to prove it’s way to chosing which action to
perform.

function action(i:I) returns α:A {
 for each α in A do {
 if(i using ρ proves Do(α) {
 return α
 }
 }
 for each α in A do {
 if(i using ρ does not prove NOT(Do(α))) {
 return α
 }
 }
 return null

}

?

Example: The Vacuum World I

 Possible actions:
A={turn, forward, suck}
(turn = turn right 90 degrees)

Agent‘s objective:
suck up all dirt

 Domain-Predicates (Facts)
In(x,y) Dirt(x,y) Facing(d)
(d from {south, north, west, east})

Agent’s next function is:),()(\),(pnewoldpnext Δ∪ΔΔ=Δ

}},,{,..),(|,..),({)(1010 FacingDirtInPttPttPold ∈∧Δ∈=Δwhere

DPerDnew →×:and computes new Facts

α

22/9/2013	

14	

Example: The Vacuum World II

•  Agents database-rules:

)(),(),(suckDoyxDirtyxIn →∧

Objective:

Traversal:	

and for all other rows accordingly

i i i

ρ

Deductive Agents – does that work?
• The idea of prooving theorems as a way of making

decisions is logically sound and rigouros

Two challenges remain:
1.  It is time consuming to program
2.  It is time consuming to execute

• Applied in a human setting it is also rather rigid.
Imagine a theorem:
-  I will buy the cheapest copy of Wooldrdige’s book.

• Requires you to find a copy, check the price
-  Find next copy check price
-  Etc. until you have found all copies of the book

• People tend to use Practical reasoning

Outline of the Lecture

• Agent definition – a closer look (Ch 2.1)

• Beliefs Desires & Intentions –BDI (Ch 2.4)

• Formalising the agents (Ch 2.5)

• Agent decision making – Utility (Ch 2.6)

• Agent reasoning – deduction (Ch 3)

What is JACK

JACK Intelligent Agents is an environment for
building, running and integrating commercial Java-
based multi-agent software using a component-based
approach. 	

22/9/2013	

15	

Beginner friendly

JACK Architecture

Agent Capability

BeliefSet

Event

Plan Event

Plan

has

post

use

data
member

handle
send

use

Multiagent Systems in Power Systems

• In Multiagent Systems, we address questions such as:
-  How can cooperation emerge in societies of self-interested

agents?
- What kinds of languages can agents use to communicate?
-  How can self-interested agents recognize conflict, and how

can they (nevertheless) reach agreement?
-  How can autonomous agents coordinate their activities so

as to cooperatively achieve goals?

